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ABSTRACT
In the domain of power distribution network, software that
can estimate the grid state using several measurement val-
ues as input has been rarely used in the low voltage grid.
Such software tools are based on adaptive state estimation
methods and their accuracy highly depends on the avail-
able input data. Especially, in the low voltage grid which is
mostly not monitored at all, the increasing number of con-
trollable high-power loads, such as electric vehicle charging
stations or decentralized photovoltaics and battery storage
systems, directs the focus to the actual grid state, in partic-
ular with regard to the power quality.

This paper discusses how to use machine-learning sup-
ported, data-driven state estimation in order to determine
the grid state in the low voltage grid irrespective of the grid
topology. We compare different input data sampling strate-
gies, like Monte-Carlo, sensitivity analysis, as well as realis-
tic power load profiles with respect to their applicability for
training the state estimation. Using correlation analysis, a
dependency graph can be modeled, which reflects the impor-
tant input measurements for each parameter. Furthermore,
this paper discusses the accuracy and applicability of differ-
ent machine learning techniques, such as linear regression,
nearest-neighbor and neural networks.
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1. INTRODUCTION
In future, the smart grid will contain thousands of grid
state measurement devices in the distribution system and
smart metering devices at the households that can provide
various different measurement values. Among them, the
real and reactive power can be used for billing purposes
and the voltage magnitude and angle determine the grid
state. Transmitting all these information from all avail-
able smart metering device will require a high bandwidth
in the future smart grid. Additionally, in case of commu-
nication failures the total grid state cannot be monitored
anymore. Using state estimation it is possible to determine
the grid state based on a subset of the measurements, e.g.
with algorithms from literature [1, 2, 3] or the state estima-
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tion feature in DIgSILENTs’ PowerFactory1. Most of these
tools perform simulation-based state estimation, which re-
quires information about the grid topology and depends on
a Newton-Raphson solver. Especially for smaller Distribu-
tion System Operators (DSO)s, e.g. municipal utilities, the
network maps of their low voltage grids are often not stored
in a digital way and sometimes the exact line distances are
not even known. In order to overcome this issue but still
obtain a accurate grid state, we discuss the usage of ma-
chine learning techniques to determine the grid state based
on a certain subset of available input measurements in this
paper.

2. METHODOLOGY
In order to estimate the grid state by machine learning tech-
niques, several important considerations must be taken into
account. First, it should be possible to obtain the training
data with a reasonable effort. This can be difficult in case
of a brown field approach with potentially limited measure-
ment data that may only partially cover subsections of the
grid for fractions of time. Second, the input features for the
machine learning model need to be chosen carefully and,
finally, an appropriate machine learning model need to be
trained and validated.
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Figure 1: Grid Model

As shown in Figure 1, the low voltage grid consists of lines,
buses and loads. Loads can only be attached to buses, which
are interconnected via lines. For simplicity, generation com-

1https://www.digsilent.de/en/state-estimation.html
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ponents like photovoltaic (PV) systems are modeled as nega-
tive loads and all loads are assumed to be balanced between
the phases. Each load is defined by its real power P and
reactive power Q, while each bus reveals the voltage mag-
nitude U and voltage angle θ as calculated by a power flow
solver or determined by measurement devices.

In the following, training data are generated by sampling
(P , Q) pairs for each load and by running a power solver, e.g.
PowerFactory, to obtain the voltage magnitude and voltage
angle values. The obtained data set is analyzed variable-by-
variable and the other most correlating variables are identi-
fied to construct a dependency graph. Based on the graph,
machine learning models can be trained for each variable to
estimate its value.

2.1 Training Data
The quality of the training data plays a very important role
on the performance of machine learning models. For that we
propose to use three different sampling strategies: (i) Uni-
form sampling using Monte-Carlo simulation, (ii) one-at-a-
time sensitivity analysis and (iii) realistic load profiles.

With Monte-Carlo simulation, the respective input pa-
rameters P and Q are uniformly sampled, independently
from each other between a realistic minimum and maxi-
mum value, e.g. taken from realistic load profiles. Fur-
thermore, all (P , Q) pairs with a power factor less than 0.6
are dropped, for a lower power factor being unrealistic for
households. From theses finite number of samples, a uni-
formly sampled (P , Q) pair is chosen for each load at the
low voltage grid.

The one-at-a-time sensitivity analysis fixes uniformly dis-
tributed input parameters from a realistic range to all loads
except one, where different parameter values from a fixed
range are tested. This is repeated until enough data are
available for each single parameter to train a machine learn-
ing model. Since only one input parameter is changed at
the same time, this method likely will reveal the most influ-
encing factors for each parameter.

Considering the realistic context of a low voltage grid, ar-
tificially generated input parameters, such as Monte-Carlo
sampling or sensitivity analysis are not possible. In order to
model real world input data, as it would come from measure-
ments from metering devices, we propose to assign realistic
load profiles to each load in the power flow simulation, such
as provided by Tjaden et al. in minute or second based res-
olution [4].

2.2 Graph Modeling
After generating the input data for a specific low voltage
grid, the data need to be analyzed with regard to their pa-
rameter dependencies. We propose to construct a graph that
represents the dependencies between the parameters of the
low voltage grid. Each parameter (P , Q, U or θ) is repre-
sented by a node. An edges between two nodes represents a
high dependency between these two parameters. An exam-
ple of such a dependency graph is depicted in Figure 2.

The construction of this dependency graph can be done in
two different ways: (i) knowledge-based or (ii) data-driven.
Using the grid topology and physical laws, one could ex-
tract highly depending parameters and connect them with
an edge. Since a machine learning model is to be trained
on the gathered data, it need to be ensured that each node
has an appropriate number of connections to other nodes.

P1 Q1 U1 θ1

P2 Q2 U2 θ2

Figure 2: Dependency Graph

Another way to construct the dependency graph is to model
it on a data-driven way, e.g. using Pearson correlation coef-
ficient. Each parameter is connected to n other parameters
that yield the highest Pearson correlation. Especially with
realistic sampled data it can be expected that at some sit-
uations the Pearson correlation is quite high, while no real
dependency exists between the nodes. Using one-at-a-time
sensitivity analysis seems like a promising sampling strategy
for auto generating the dependency graph.

2.3 Machine Learning
In the area of machine learning there are many different
models that can be applied to the state estimation problem.
As known from physics, the power flow calculation is based
on a nonlinear system. Hence, using linear regression models
will probably not achieve a very high accuracy, unless the
grid is mainly operated with a nearly uniform power factor,
where the grid can be approximated with linear equations.

In case the training data set is big enough and includes
most of the possible grid states, especially high peaks and
different combinations of high and low loads at different
nodes, nearest-neighboring algorithms, like KNN or Support
Vector Machine (SVM), could work quite well. In that case,
the state estimation will create the estimated state based on
the k most similar trained states.

As a quite different machine learning technique neural net-
works could be used. Neural networks are inspired by the
human brain and embody rules derived from training data.
Since the power flow calculation is based on a mathematical
model, this class of machine learning algorithms seem to be
a promising direction.

3. DISCUSSIONS
From the methodology described in Section 2 we expect to
obtain local parameter estimations, from which the overall
grid state can be inferred. Nevertheless, there are several
drawbacks of the proposed approach that will be discussed
in the following.

The performance of the proposed data-driven state es-
timation is expected to highly rely on the quality of the
provided training data. In case of one-at-a-time sensitivity
analysis, the most influencing parameters can be identified
easily and we expect that the dependency graph modeling
and machine learning will perform quite well. The accu-
racy using Monte-Carlo simulation for sampling and near-
est neighbor algorithms for learning will probably depend
on the data range, whether all important situations are cov-
ered. Unfortunately, in a real low voltage grid it is nearly
impossible to obtain such ideal data sets. The only realis-
tic sampling strategy (using load profiles) will likely reveal
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high correlating connections between parameters, e.g. be-
tween the real power of different households due to similar
load profiles, which are actually independent variables. As
a result, the dependency graph (if not modeled with expert
knowledge) will connect wrong parameters and the machine
learning model is trained with non reasonable assumptions.
Furthermore, we expect that dependency graphs that are
built with expert knowledge and consider physical laws will
outperform the data-driven construction.

Due to its very local view on the grid - input parameter
limited to a subset of all available parameters - the output
of each trained parameter model will likely yield inaccura-
cies. In contrast, this allows a very flexible usage of the
state estimation model, since a wide set of different missing
values can be tolerated. Estimated output values from some
of the parameter models can serve as input to further pa-
rameter estimations following the constructed dependency
graph. Using Pearson’s correlation during construction of
the dependency graph is on one hand a reasonable decision,
but on the other hand the resulting dependency graph is not
directed, because of the symmetry of the correlation coeffi-
cient. As a result, at least one of the two parameters of each
edge is required to use the trained model for the full grid
state estimation. Furthermore, short cyclic paths in the de-
pendency graph limits the overall grid state estimation with
missing values.

Because each parameter is estimated on his own, there can
be miss-matches between the different parameter models,
such that the estimated overall grid state is not reasonable
at all or the estimated parameters used as input to other pa-
rameter estimation models yield unrealistic output. In order
to overcome this issue, a feedback loop could combine the
knowledge of all parameter estimation models that incorpo-
rate the estimated parameter and optimizes this parameter
such that it fits best to all of the models.

Although our methodology requires a high number of small
parameter estimation models, the lower number of input pa-
rameters leads to a fast model execution, especially when
executed on hardware with limited computational power.

4. CONCLUSIONS
In this work we discussed the applicability of machine learn-
ing models to estimate the grid state in the power distribu-
tion system. Furthermore, we proposed an approach to split
the state estimation problem to small pieces of parameter
estimation models and combine the output of those models
to obtain the overall grid state estimation. This paper iden-
tified some drawbacks and opportunities of our approach
and discussed them in detail.

In future, pseudo measurements, e.g. based on historical
data, and short term prediction of load profiles could be
integrated to enhance the capability of our model.
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